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Computiug the Reliability of k out of n systems

by

Philip J. Boland and Frank Proschan

Abstract

Jf surveyssome of the more important theoretical results about the structure

of the reliability function of a k out of n system, and indicate Ahow these results

may be used to obtain easily calculable bounds for the reliability of a specified

k out of n system.
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1. Introduction.

A system of n components which functions if and only if at least k of the

components function is called a k out of n system. Parallel systems are 1 out

of n systems, fail safe systems are n-1 out of n systems, and series systems are

n out of n systems. le make the assumption that the n components in the system

operate independently of one another. Therefore if p = (pl, "" P) is the vec-

tor of component reliabilities and c = (e , n) represents any vector with

components equal to zeroes or ones,
1 cu I-c 1-€ n

then hk (P) = X P "'" Pn (I-Pl) (1-P n
k, Es cn 2:k>. k

is the probability that k or more of the components function. We refer to

hk( Q): [0, l]n - [0, 1] as the reliability function of a k out of n system with

independent components. For parallel, failsafe, and series systems, the relia-

bility function hk(p) is a quite manageable function, even for large values of n.

In general, however, the behavior of the function hk( (p) on [0, 1] n can be quite

complex, and the calculation of hk(p) at a single vector of component reliabilities

can be quite cumbersome. In the relatively simple case of a 5 out of 8 system for

example, evaluating hs() would usually involve calculating 93 products of 8 num-

bers. In this expository paper we survey some of the important theoretical re-

sults which have been obtained about the reliability function hk(P), and indicate

how these may be used to reduce calculations and obtain good bounds for the

reliability of a k out of n system.

2. Basic Theoretical Results.

Hoeffding (1956) considers the problem of finding the maximum and minimum
n

of hk(Pl, ... , pn) subject to the constraint that 1 pi is held fixed. His results
i=l1

are presented in terms of the number of successes in independent Bernoulli trials.

AM
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It is clear however that if S is the number of successes in n independent Bernoulli

trials with respective success probabilities pl, .... Pn, then Prob(Sk) = hk

(PI1 .... pn). For a given vector p = (Plt ... Pn) of component probabilities,

n n n
we let = Z Pi/n [ Pi] be the greatest integer less than or equal to IPit

i=l i -- i l

n n
and (1, . 1, 1 p - Pi], 0, ..., 0) be the vector with (jpij of its n

i=l i=l

coordinates equal to 1. Hoeffding proves in particular the following theorem:

Theorem 1. For any vector p = pP1. "'" Pn) of component probabilities we

have:

1 = hk(l,... I, 1 P1 i " ,j0,~o ... , 0) a hk(Pl, ... pn) > hk{(P, ...*p

n
if p Pi >- k,

i=l1
while

0 = hk(l . , , Pi , , h.., pn )  hk , .

=E

nif Pi < k-l.

i=l

Hoeffding also establishes upper and lower bounds for hk(p) for the case
n

when k-I < i pi < k; however these boxmds are considerably more complicated.
i =1

We present the first of four figures in an attempt to give some geometrical

insight into the behavior of hkCp). For any a such that 0 : a -5 n, we define
n

Xa= (P: pi = a and 0 pi !5 1 for i--i,..., n). Although the convex set .=
i=l n

is the intersection of the hyperplane (x: jlxi = a) with the n-dimensional unit
j=l

cube, it will be represented geometrically by a "line" in the following figures.

The n-dimensional cube itself is represented by a "square", and by the "diagonal"

we will mean the line of points all of whose coordinates are equal. Theorem 1 says
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that hk(p) restricted to AU assums a maximum of one at the 'extremitiesI of

). and a minimum of hk(cs/n, ... , a/n) along the diagonal whenever a a k, while

it assumes a maximum of h k(*/n, ... , a/n) on the diagonal and a minimum of 0

at the extremities of A whenever a : k-1.

(Figure 1 goes here.)

The theory of majorization and Schur functions provides an elegant format

for presenting many of the results concerning the reliability function hk(P).

Given a vector x = (xI, ..., x), let X111 : x[2 ] ; ... a x[n] denote a decreasing

rearrangement of x1, ... , xn: (we write x >m y) if

Xil ;i2!Y[i ] for j=l, ... , n-l

and n n
Sx[i] =i=i]"

Hardy, Littlewood and Polya (1952) show that x >ym if and only if there exists

a doubly stochastic matrix 1 such that X = x1l. If x >m b then the coordinates

of x are move "dispersed' than those of y (See Marshall and Olkin (1979) for an

excellent treatment of majorization.) Sthur functions are real valued functions

which are monotone with respect to the partial ordering of majorization. A

function h with the property that x ,m Y W> h(A) a (S) h(Z) is called Schur

convex (Schur concave). A useful characterization of Schur convexity (-concavity)

is given by the Schur-Ostrowski condition, which states that a differentiable

permutation invariant function h defined on Rn is Schur convex (Schur concave)

if and only if

ahx )( 7 ) Z (!) 0 for all i, j and We .

(xi x i (--

Some useful comparisons for hk(p) can be obtained by working with the

hazardtransfer. The hazard transform zk: [0, ,)n [0, -) of hk is defined
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by

Zk(R 1 , ... , R) = -log hkeR ... , e-n).

Pledger and Proschan (1971) prove the following theorem about zk:

Theorem 2. The hazard transform zk of a k out of n system is increasing

nand Schur concave on [0, -) .

A particularly interesting corollary of Theorem 2 is that hk(Pl, .. Pd
n

2: h~3~ ***O .. 'PG) where PGis the geometric mean I llPi), /n. Together with

Theorem 1 this implies that

h k(p, ..., p) ? h k(PG' "' Pd)

whenever n
[Pi !;k-1.

Gleser (1975) uses majorization to obtain refinements of the inequalities

established by Hoeffding. If S is the number of successes in n independent

trials with respective success probabilities p1. "'. Pn' then Samuels (1965)
n n

shows that Prob(S=j) is unimodal with mode at [.=pli] or [ 1 +1 P.] Using this

fact together with the Schur-Ostrowski condition, Gleser proves the following

theorem:

Theorem 3. The reliability function hk(2): [0, l1n _, [0, 1] is Schur convex

in the region where pi a k~l and Schur concave in the region where Pi 5 k-2.
isI i=l

Figure 2 may help to illustrate Theorem 3. The region shaded by vertical

lines indicates where hk(p) is Schur convex, while the area shaded by horizontal

lines indicates where hk(p) is Schur concave.

(Figure 2 goes here.)



Ifp (p I ""' Pn) where n>2, we denote by ij the vector in [0, 1 ]n-2

obtained by deleting the ith and jth coordinates of p. For any r>O, we let

r p): denote the probability that exactly r of the n-2 components (with

respective probabilities given by p'J)function. Boland and Proschan (1983)

prove that

h;_2(kl ) < (a) h,_j(Eij) for ij, k 2

whenever

p > ( for all Aioj. This result, coupled with the Schur-Z n-1

Ostrowski condition, enable Boland and Proschan to prove the following Schur

property of hk(P) :

Theorem 4. The reliability function hk(p): [0, l]f [0, 1] is Schur convex
the regio [ki n k-in.

in the region - ] and Schur concave in the region [0, -1 .
nk-1 k-
o n-', ... , j~k) on the diagonal is a focal point in distinguishing-The pint (-l --

the regions where h (p) is Schur convex and Schur concave. The number i plays

an important role in the study of the function of one variable hk(p) =
n n) 

•i, P n i(n~) pi(1 .)n-i" (Note that hk(p) is the restriction of hk(P) to the diagonal.)

k-i k-1
hk(p) is convex on the interval [0, -- a-j] and concave on the interval ,1](See

Barlow and Proschan (1965)). Figure 3 may help to interpret Theorem 4. Again

the vertically (horizontally) shaded region indicates where hk(P) is Schur convex

(Schur concave). Figure 4 illustrates the combined results of Theorem 3 and

Theorem 4.

(Figure 3 and Figure 4 go here.)
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3. Applications.

We now give a number of examples in order to demonstrate how the properties

of hk(p) presented can help us both in comparing various k out of n systems and

in calculating bounds for the reliability of specified k out of n systems.

Example 1. Let us consider a 3 out of 4 system. Theorem 4 in particular

implies that a system with component reliabilities (.7, .8, .9, 1.0) is superior

(has higher reliability) than a system with component reliabilities (.75, .75,

.95, .95) which in turn is superior to one with component reliabilities (.85, .85,

.85, .85). Note that for all three of these systems the four component reli-

abilities sum to 3.4, and that each component reliability exceeds k-1 2
n-i 3'

Theorem 4 also implies that the system with component reliabilities (.2, .3, .5, .6)

is inferior to one with component reliabilities (.2, .4, .4, .6) which in turn is

inferior to one with component reliabilities (.4, .4, .4, .4).

Example 2. We now consider evaluating the reliability of a 5 out of 8

system. As previously indicated, even for this example where k and n are rather

small, the standard method for evaluating hs(p1, ... , PB) would normally involve

(if for example the eight component probabilities are distinct) calculating the

sum of 93 products of 8 numbers each. We will now indicate by judiciously 'aver-

aging' some (or all) of the component probabilities, how more easily calculable

bounds may be computed for the reliability of the system.

Given a vector p = (p 1 , .. , P8) of component probabilities, we lose no
generality in assuming that p, f P2 : I p.. Let us use the following

notation: Pij = (pi + pj)/2 and Pijtm (pi + Pj + p, + m)/ 4 for any integers

i, J, Z, m between I and 8. As before p and PG will denote respectively the

arithmetic and geometric means of the components of the vector £ = (pI '" P8 ).
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Note that p = (Pl' P2 ' P3 * P4 * PS' P6 ' P8) >m (P12" P12' P34' P3 4 -PS6' P56'

P7 8' P7 8)
>I

(P1234' P12341 P1234' P12 34' P5 6 7 8' P5 6 78' PS6 78 ' P5678
)

S>m (p, p, p, p, p" p, p, p) R

The calculation of hk(p) becomes easier as the number of distinct component values

in p decreases. While the calculation of h (Q) could involve adding 93 products,

the calculations of hs(P1 2, P1 2 ' P34' P34 ' P5 6 ' P5 6 ' P7 8 -P78). h5 (P123 4 1 P1234'

P1 2 34, P 1 2 3 4 ' P56 7 8' P56 78 ' P5 6 78 ' P56 7 8) and h,(E) would involve adding respec-

tively at most 31, 10, and 4 products. If the vector components of p= (P1 ' P2'
k-I

P3 , p4, P, P6, P7 ' p8 ) are all > = ± (respectively then we can easily
PYP4 S'P6 V 8n-i 77)

determine some lower (upper) bounds for h5 (Q) by using Theorems 1 and 4. To

illustrate the accuracy of these bounds we compute some specific probabilities.
4

a) Let p = (.60, .64, .70, .74, .80, .84, .90, .94). Each pi i and we

observe that

h5 (p)= .92097 = h5 (.60 , .64, .70, .74, .80, .84, .90, .94)

> .92069 = h5 (.62 , .62, .72, .72, .82, .82, .92, .92)

.91896 = h5 (.67, .67, .67, .67, .87, .87, .87, .87)

k .91201 = h5 (.77, .77, .77, .77, .77, .77, .77, .77).

b) Let p = (.61, .62, .63, .64, .65, .66, .67, .68). Then again each
" 4

Pi 2: 1 and we observe that

h5 (P) = .69580 = h5 (.61, .62, .63, .64, .65, .66, .67, .68)

? .69580 = h5 (.615, .615, .635, .635, .655, .655, .675, .675)

.69576 a h5 (.625, .625, .625, .625, .665, .665, .665, .665)

k .69562 a h5 (.645, .645, .645, .645, .645, .645, .645, .645)
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c) If p = (.10, .14, .20, .24, .30, .34, .40, .44), then each component
4

Pi : and we observe that

hs(p) = .03188 = h 5(.10, .14, .20, .24, .30, .34, .40, .44)

.03206 = h5 (.12, .12, .22, .22, .32, .32, .42, .42)

.03318 = h5 (.17, .17, .17, .17, .37, .37, .37, .37)

.03768 = h 5(.27, .27, .27, .27, .27, .27, .27, .27).

Note that for the given vector p, the geometric mean of the coordinates is

PG = .24276. Using the corollary to Theorem 2 we can compute the lower bound for

hk(p) which is given by hS(PG) = .02410.
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Figure 1

Figure 2
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Figure 3

Figure 4
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